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Abstract—This paper examines bifurcations, including diffuse bifurcation modes of deformation,
such as necking. bulging and surface rumpling. and localized bifurcation modes, corresponding
to the formation of shear bands. for a compressible pressure-sensitive circular cylinder under
axisymmetric deformations. The analysis emphasizes the effects of non-normality, transverse ani-
sotropy. and confining stress on the appearance of diffuse modes and their relationship to the onset
of localization. In particular, introduction of transverse anisotropy and non-normality promotes
not only localization but also geometric diffuse modes under compression. In addition, constant
compressive confining stress promotes diffuse modes under compression but hinders them under
tension. For the surface rumpling mode (short wavelength limit of diffuse mode), both anisotropy
and compressive lateral stress favor pre-peak bifurcations; in-plane compressibility promotes pre-
peak bifurcations under compression but retards them under tension. Numerical solutions of the
eigenvalue cquation for the elliptic complex regime demonstrate that the carliest bifurcation avail-
able is the diffuse necking mode under tension. However, uncxpectedly, some geometric diffuse
modes with finite wave number, instead of the bulging mode, become the first possible bifurcation
under compression. The possible angle of localization that may be triggered by such diffuse modes
is about the same as those predicted by shear band analysis. Consequently, such diffuse eigenmodes
may trigger localization in the vicinity of peak applied stress.

1. INTRODUCTION

Bifurcations, such as diffuse geometric modes and localized shear band modes, are often-
observed phenomena in material testing. Therefore, a detailed bifurcation analysis, which
includes diffuse modes and the relation of their appearance to the onset of localization, may
provide considerable insight into the failure process.

Since the most commonly employed testing configuration, particularly for geo-
materials, uses circular cylindrical specimens, we examine axisymmetric bifurcations from
states of uniform compression or extension of circular cylinders. Although the constitutive re-
lation we employ is general, our emphasis is on applications to geomaterials, especially
brittle rocks.

In the axisymmetric compression test, localization of deformation is often related to
the final failure mode in rocks. The analysis of strain localization from axisymmetric
deformation states by Rudnicki and Rice (1975) suggests that localization in a specimen
under compression appears relatively late in the post-peak applied stress regime. Exper-
imental evidence is, however, not definite in supporting whether the development of strain
localization occurs preceding or after peak applied stress. In particular, although there
are some experimental observations [e.g. Rummel and Fairhurst (1970) ; Wawersik and
Fairhurst (1970); Wawersik and Brace (1971); Fredrich er al. (1989)] that support the
prediction by Rudnicki and Rice (1975), more frequently, localization is observed preceding
peak applied stress [sce summary of experimental observations by Santarelli and Brown
(1989)]. Even though Rudnicki (1977) concluded that stress-induced anisotropy may cause
some reduction in the amount of post-peak deformation predicted for localization, extreme
values of material parameters are necessary to obtain pre-peak localization. In this study,
we attempt to relate the strain localization observed preceding peak applied stress to the
diffuse modes available in the hardening stage of the stress—strain curve. In particular, we
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investigate the hypothesis that diffuse geometric modes trigger non-homogeneous detor-
mation and, eventually, lead to pre-peak localization of deformation,

More spectfically, this paper considers bifurcations of a circular cylinder deformed in
axisvmmetrnc tension or compression. The ends of the cylinder are loaded by u prescribed
velocity with no sheur traction; and a constant lateral stress is applied with zero shear
traction on the sides of the cylinder. An initial state of homogeneous deformation is always
a solution to governing equations and we investigate the conditions for which a bifurcated
state of non-uniform deformation is also possible under the same boundary conditions. We
consider both diffuse bifurcation modes, such as necking. bulging and surfuce rumpling.
and localized bifurcation modes. corresponding to the loss of ellipticity or the shear band
modes. An incrementally linear constitutive model. including transverse anisotropy and
non-normality. introduced by Rudnicki (1977) is employed in this study. In particular, the
direction of the inelastic strain increment described by the model does not, in general.
coincide with the normal to the yield surface in the stress space ; and transverse anisotropy
ts introduced by assuming different longitudinal and transverse shear moduli. The conse-
quences due to such material behaviors on the appearance of diffuse modes are emphasized :
and the possibie connection of diffuse mode to the onset of localization is examined.

The present paper is a continuation of the works by Cheng e¢r «f. (1971). Hutchinson
and Miles (1974), Rudnicki (1977) and Miles and Nuwayhid (1985) and provides an
analogous study of the plane strain counterpart by Chau and Rudnickt (1990}, Eluborating
upon the work of Miles (1971) and Cheng ¢r «f. (1971), Hutchinson and Miles (1974)
extended the analysis of necking bifurcation of an incompressible cyvlinder under uniaxial
tension to include transverse anisotropy. No non-normality is incorporated in the above
studies. Miles and Nuwayhid (1985) further extend the analysis to include compressibility
but do not consider anisotropy. Because the constitutive law used by Miles and Nuwayhid
{(1985) 1s written in terms of the Jaumann rate of Cauchy stress and the rate-of-deformation,
it does not satisfy precise normality in work-conjugate variables. However, this relation
does not allow for the type of non-normality typicat of brittle rocks. Therefore, the role of
non-normality in bifurcation analysis under axisymmetric deformation is examined here.

Vardoulakis (1983) carried out a bifurcation analysis, which is sinular to that con-
sidered here, for a rigid-plastic circutar cylinder with non-assoctated flow rule and plastic
dilatation, The constitutive faw used by Vardoulakis (1983) can be interpreted as o special
case of Rudnicki’s (1977) relation which is employed in this paper. However, he limits
consideration to parameters typical of a particular dry sand. Furthermore, the effect of
non-normality and anisotropy on geometric diffuse modes is not fully explored.

2. CONSTITUTIVE RELATION

We consider a circular cylinder of radius « and length L under axisymmetric defor-
mations. The current configuration is adopted as o reference and the subsequent defor-
mation of the material is characterized by the following time- und rate-independent consti-
tutive relation (Rudnickt, 1977):

. r* o ,
D.. = {&::.— 5 (r‘r,,+r”r..,,)]

R T TR LA
Dy= —vD. 0+ 20, [0 — ;o,/,(&,,+r‘;,,,,)}+o,,‘< o )
&
D.=,". (up=r0) (1)

i

where (r. . 2) are cylindrical polar coordinates, a is the Cauchy stress, the superposed V
denotes the Jaumann or co-rotational rate (Prager, 1961). and D is the rate of deformation
tensor.
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As discussed by Rudnicki (1977), E is the instantaneous tangent modulus, that is, the
slope of the axial stress—strain curve at fixed confining stress. In particular, E decreases with
deformation, equals zero at peak applied stress, and becomes negative for softening regime.
The axial straining is inhibited by the lateral stress rate by a factor of r*. Thus, the pressure
sensitivity of the material is described by this parameter r*.

The second of (1) can be rearranged as

1
%(Drr'i'DHﬁ) = "‘VD::+ §”k(gn+gei{l)v

| .
D,,— Dy = ;5(5"‘”0"»!)- 2)

in order to interpret other material parameters. For constant lateral confining stress, the
effective Poisson’s ratio v is the slope of the lateral strain versus axial strain curve. In
general, v > 1/2 for dilatant materials. In particular, for brittle rocks, a typical range of
1.0-2.4 near the peak applied stress is observed under axisymmetric compressions (Rud-
nicki, 1977). G, and G, are the incremental transverse shear and longitudinal shear moduli.
The in-plane bulk modulus is denoted by K.

As mentioned by Rudnicki (1977), it is difficult to interpret r* and K from the existing
experimental data. Therefore, it will be helpful to compare (1) and the axisymmetric form
of the isotropic constitutive luw introduced by Rudnicki and Rice (1975). As expected, E
is found to be proportional to the plastic hardening modulus # while K is on the order of
elastic modulus. If the plastic hardening modulus is negligible compared with the elastic
moduli, then r* and 2v are found to be

= (5= 2u/ /35 +1/S3).
v = (528130 +B1V3). 3)

where § = sign (0,.—a,,), ¢ is a friction cocflicient and f is the dilatancy factor (Rudnicki
and Rice, 1975).

As mentioned by Rudnicki and Rice (1975), the typical range for g is 0.4-0.9 and for
f1 is 0.2-0.4 for brittic rocks. Thus, with these values (3) gives 2v 2 r* for tensile loads and
2v < r* for compressive loads. More specifically, v ranges from 0.70-0.95 for compression
and 0.22-0.35 for tension while #* ranges from [,.90-4.25 for compression and 0-0.44 for
tension (; must be less than \/3/2 in order for r* to be positive in the case of tension).
Equation (3) also suggests that r* and v can be identified as the pressure-sensitivity and the
dilutancy factors respectively for the axisymmetric case. Furthermore, since ff = u implics
that the direction of inclastic strain increment coincides with the normal to the yield surface,

r* = Jv, (4)

implies normality. However, precise normality of work-conjugate variables requires that o
in (1) be replaced by Kirchhofl stress t (=6 (p/p,), where p and p, are the densities of the
current and reference configurations) which is work-conjugate to D (Hiil, 1968, 1978).

The form of the constitutive relation considered by Hutchinson and Miles (1974) can
be recovered by specialization of (1), in particular, by considering the incompressible (K —
o and v = 1/2) and pressure insensitive (7* = 1) limits of (1). Similarly, setting r* = 2v
and G, = G in (1) recovers the constitutive model by Miles and Nuwayhid (1985).
Furthcrmore, the rigid-granular dilatant material considered by Vardoulakis (1983) can
also be recovered by assuming that E, K, r* and v are some specific functions of Cauchy
stress, the Jaumann rate of Cauchy stress and the rate of deformation. Such constitutive
assumptions are, in general, too specific for rocks. In particular, the incremental parameters
can depend on the current stress or strain state but not necessarily in the way suggested by
Vardoulakis (1983).
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The maximum load point can be evaluated by setting

I'.. = 0. ir, = 0 fgg = O. (5)

where t is the nominal stress rate. The rate of deformation tensor is defined as
= {(L+L"). (6)

where the superscript ()7 denotes the transpose of (). For axisymmetric deformations,
the velocity gradient tensor is given by

-

cr cr. cr cr. v
LT =Vv= _?_’erer + i;' €€ + 7?’ €.¢e + A«; e:e; + = €€, (7)
cr ¢ ¢z ¢z r

where v is the velocity vector and e,. €, and e. are the base vectors to the cylindrical
coordinate system. Substitution of (7) into (6) gives:

au. v, v, 1 {dv, Cr.
Di=tr Do=gpe D=1 D':=5<'5;-‘+‘5;>' ®)

In addition, the material time rate and the Jaumann rate of Cauchy stress are related as
d=6-W-a+o W, 9)

where W = (L= L")/2. More specifically, under axisymmetric stresses (only a,,, 64 and o,
are non-zero), substitution of (7) into (9) yiclds

vV . v . v . l ("l r 01?:
v =0,, Gy =04, 0O.=G0C., 0.=0.— ‘q'_‘ - (:’[' (0;: - Urr)~ (IO)

Furthermore, since the current configuration is adopted as reference, that is det (F) = | and
F = I where F is the deformation gradient tensor and 1 is the second order unit tensor, the
nominal and Cauchy stress rates are related as

t=d+otr(D)—L-a, an

where tr (D) is the trace of D. Substitution of (7), (8) and (10) into (11) yields

ér, v , e, v,
. v r r N v r =z
=0.%0\ 5+ ), t,=0,t06,\ -+ )
or r r ¢z
(%

: + é(d::—d,,)( q
r [5

-~
o
i

or,
] Py Dy

) Jv, v, Qv

L. = gr: =037 + %(d:: —o )| = — 7
cz (e cr

. s

. v cr, «U.

tyy = Utm+°’09<”§_ + '-;->' (12)
r ¢c

Then, eqns (1) can be rewritten in terms of t then (5) is used to yield three simultaneous
equations for three components of the rate of deformation tensor (D,,, Dgs and D..). The
condition for non-trivial D leads to the following expression for the stress at maximum
load
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o= E [I +0,12/9K—r*(1-v)/E]
T 2 1 +20,,/9Kv '

(13)

where we have used o,, = 0y as appropriate for a homogeneous axisymmetric state. As
observed in plane strain deformation (Chau and Rudnicki, 1990), ¢2** differs from the
tangent modulus £ unless the solid is incompressible (K — co and v = 1/2) and o,, is zero.
[t will be shown in Section 5 that ¢71** appears naturally as the first term of eigenstress for
the long wavelength diffuse mode.

For a smooth yield surface, G, and G, are essentially elastic moduli. However, if a yield
surface vertex is formed at the current stress point, as suggested in models for metal
polycrystalline aggregates based on single crystal plasticity (Hill, 1967 ; Hutchinson, 1970,
Lin, 1971). G, and G, may be significantly reduced from the elastic values. Rudnicki and
Rice (1975) also argued that formation of a yield surface vertex is possible in brittle rocks
due to frictional sliding on fissure surfaces. As suggested by Rudnicki (1977). this yield
vertex effect may be included into (1) by simply regarding G, and G, as the vertex reduced
shear moduli. Such an interpretation of G, and G, plays an essential role in understanding
the shear band bifurcation mode (Rudnicki and Rice, 1975 ; Rudnicki. 1977).

As discussed by Needleman (1979) and Chau and Rudnicki (1990), for solids that do
not satisfy plastic normality, Hill's (1958, 1961a, 1978) general theory of bifurcation and
uniqueness, which is based on the idea of “linear comparison solid™, is not applicable.
Consequently, (1) can only provide the upper bound of the bifurcation stress in the sense
of Raniecki and Bruhns (1981).

3. GOVERNING EQUATIONS

This section closcly follows Miles and Nuwayhid (1985) and the mathematical detail
should be referred to these authors. For a finite cylinder of radius ¢ and length L, a
cylindrical polar coordinate system (r, 0, 2), with origin resting on the bottom of the cylinder
and z-axis coincident with the axis of symmetry, is used. The ends (z = 0, L) arc loaded by
a prescribed velocity in the z-direction in such a way that shear traction vanishes. A constant
lateral stress is applied in the r-direction such that no shear traction is induced on r = ¢. The
circular cylinder is homogencously deformed in the current state and a further homogeneous
deformation is always a possible solution for the next increment of deformation. If there
exists an alternative solution for the next increment of deformation, bifurcation occurs.
The difference between the bifurcation and the homogeneous solution is denoted by the
superscript *. More specifically, we are seeking a non-trivial solution for the differ-
ence in incremental stress rates 6% and ¢ and the velocity field v*and v*

The boundary conditions governing the difference in incremental solutions are then

dv¥

on -=0,L, (14)
and
. o oJv?
r:=d:,+a,,(‘—+—”—‘>=o,
r
i,':=dr‘:—f7.-.-—_= v (IS)

on r = a. Note that the “follower type™ of confining stress, which acts always normal on
the deforming boundary of the cylinder, considered by Cheng et al. (1971) and Vardoulakis
(1983) can be recovered simply by setting ¢,, = 0 in the first of (15).

Continued equilibrium of both incremental solutions can be written in terms of Cauchy
stress rate as follows
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< e tax cx e EI
ca,, co., G o — O pa G,, —Ouyn (o o r:
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= 0. (16)

with d,4 and 4. being zero.

For compressible solids. the stream function employed by Hutchinson and Miles (1974)
does not exist. However, since o,, equals o, for the homogeneous primary state. a stress
rate potential (r.z) can be defined such that (Miles and Nuwayhid, 1985)

. 1 ¢ oy ) (‘EZX
G= L G\"a ) 0T Taa (17)
rér\ Cr ir ¢z

A similar stress potential has been used by Love (1927) in calculating the stress distribution
in an isotropic elastic circular cylinder; Elliott (1948) further showed that Love's stress
function can be used to solve elastic problems in transversely isotropic solids. By combining
(). (10) and (17). the velocity components, ¢, and ., are found to be

1 ¢ l 9Kr*v+2E\ 'y
r (’r(”') 0w [( 9Ky )0:1 -L'x]'

ar. 1 4G, +9K . 'y
oz 2va, |:<_, ‘61\"““)["%—’ el (18)

where

)
or oy

Lol o
0 = [EGG +9K) + 18KG,r*v]/(18Ky) and L,( )= ‘[/(

ror

Note that o, has the interpretation as the stress at maximum load for the same material
under plane strain deformation. More specifically, it D,, = 0 (or cquivalently D, = 0) in
the Cartesian form of (1) with the z-axis replaced by x;-uxis, then &1, (or equivalently &, ,)
can be climinated to give a plane strain version of (1). By using the conditions for a load
maximum given by Chau and Rudnicki (1990), the stress at the maximum load point s
found to be equal to a,, given above. Similarly, the Cauchy stress rate, dy, and d,,, can be
obtained in terms of material parameters and the stress rate potential y(r, 2):

. 9Kv v, ENce, N L & g
- T IRt AT .
O’ml ‘)I\'r*v + 2[: Gvn r O'," v (\.r r (-\r l:‘r
9Kv Efde, v 1 ¢ f oy dr l‘,)
s v e b ! £ G 1o~ ). 19
Ter ‘)I\'r*v+2E|:2v<(7r + r)+ rér <r 0r>:|+ ‘((?r r ()

Furthermore, by combining the last of (1), (8) and (10), the following cxpression is obtained

G,. Or qr.
L= () + = (=), 20)
G et g =9 ‘
with s = (6..—0,,)/2G,. Finally, the second of (17) and (18) are substituted into (20) to
yield the following governing equation for x :
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: &y
ALix+BL S5 +C5E =0, @

The coefficients, 4. B and C, are defined as

A = (1—5)(4G, +9K).
B = E(4G, +9K)/G, +9K[2r*vG,/G,— Qv +r*) +5(r* — 2v)],
C = 2(1 +35)(9Kr*v+2E). (22)

In general. (21) can be elliptic, hyperbolic or parabolic depending on the coeflicients 4. B
and C. Such classification of (21) is related to the classification of bifurcation regime, which
will be considered next.

4. LOCALIZATION AND CLASSIFICATION OF REGIMES

The onsct of strain localization in a narrow band with normal g is considered in this
section. A more general treatment of shear band analysis has been given by Rice (1976).
Geometrical compatibility requires the velocity increment to be continuous but permits a
jump in the velocity gradient across the band (Hill, 1961b. 1962 ; Rice, 1976)

thy=cgp (@f=rc (23)

where ¢, are the components of jump and g is the normal to the incipient band.
Incremental cquilibrium across the band gives

gpft, =0, (. f=r.2). 24)

Equations (23) and (24) are the two basic conditions to be satisfied across the shear band.
Substitution of (1) and (23) into (24) provides two simultancous equations for ¢, and c..
For a non-trivial solution for velocity gradient jumps, the determinant of the coeflicients
for ¢, and ¢, have to vanish, This gives a 4th order algebraic equation

Ag'+Bglgi+Cgl =0, (25)

where A, B and C have been defined in (22).

Shear band bifurcation is possible oniy if a real value for the ratio g,/g. exists. Thus,
the type of the governing equation for x(r, 2), (21) and (22), also dctermines the number of
real roots for g, /g.. As discussed by Hill and Hutchinson (1975), the partial differential
equation (21) is elliptic, parabolic or hyperbolic if there are zero, two or four real roots for
(25) respectively [also see Hill (1979)].

The regimes for different behavior are summarized as:

Elliptic:
E _ 8(1-5")G +9K[2v +r* +5(2v—r*) — 2r*vG/G)]
G, 4G, +9K T T
8(1—s7)"? 9Kr* ( 9/\"-) 9K 2
oA bl b e Yy p* .
4Gl+9K [(Gl'i‘ 2 ) G|+‘ 3 + 2 G|S(..V l’) N (26)
Parabolic:
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Hyperbolic:

E 81 =3)G +9K[2v+r*+5(2v —r*)=2rvG, G|

G~ 4G 9K

S(1—s5%)" > (G 9A’r*\)(”c RN 9K o] 23
Grok [\ g N\OF  ryp Gt

i

7

The elliptic regime can be subdivided into portions where the roots of (23) are complex
(EC) and where they are imaginary (EI. The elliptic imaginary subregime (EI) is given by
(26) if the negative sign in front of the square root term becomes positive.

As shown from (3). the Rudnicki-Rice (1975) model suggests that the values of r* and
v depend on the sign of (7.. —g,,)/2G,. Consequently, the elliptic—parabolic (E/P) boundary
is not symmetric with respect to a.. = g,, and this ditfers from the plane strain analyses by
Needleman (1979) and by Chau and Rudnicki (1990} (typical plots are given in Figs 8-10).

In general. if normality is not satisfied. shear band bifurcation may be possible in the
pre-peak range of the axial stress—strain curve. To see this. let us assume £ degrades more
rapidly with deformation than other material parameters. In addition. for smooth yield
surface. 1.e. G is essentially the elastic shear modulus. shear band bifurcation becomes
possible if £ diminishes to the point where the hyperbolic region is entered near s = 0.
Setting s = 0 tn (28) and rearranging yiclds the critical value of £ for shear band mode
obtained by Rudnicki (1977):

. Y Ve A VAR TN LR b
G, — G+ 4 G+ 5 Ohr*
- rry

G, +9K/4 2

.= (29)
As discussed by Rudnicki (1977), (29) actually corresponds to the critical value of £
obtained by neglecting the difference between ¢ and 6. A positive £ is possible from (29)
at strain localization although Rudnicki (1977) concluced that such a situation requires
extreme vidues of material parameters. I normality is satisfied (#* = 2v), it can be shown
that (29) is always negative for positive G, and K. As noted by Rudnicki and Rice (19795)
for isotropic materials, if plastic normality is satistied strain localization is not possible
prior to peak applied stress in axisymmetric compression. The result here generalizes this
conclusion to transversely antsotropie solids. More generally, Hill (1983) has shown, using
the technique of splitting second-rank tensors at an interfuce into exterior and interior
parts, that this conclusion, regarding the effect of normality on localization, is truc for
arbitrarily anisotropic solids.

The consequences of introducing transverse anisotropy can be illustrated by adopting
the interpretation of G, and G, as reduced shear moduli and K as an clastic modulus, i.c.
G/K ~ 0and G/K = 0. With these simplifications, (29) further reduces to (Rudnicki, 1977)

E=GRv+r*=2(2r%)' *] = 2G r*v. (30)
For shear band bifurcation to occur in the hardening range. it requires

G, (P20 + 1 =2(r%2v)' " ,

< ATE T . (31)
G, (r*:2v)
The significance of normality and transverse anisotropy for possible pre-peak strain local-
ization is illustrated in Fig. | by plotting G,/G; against r*/2v. The cross-hatched region
corresponds to shear band initiation at £ > 0. As mentioned in Section 2. the Rudnicki-
Rice (1973) model suggests that r*2v > | for compression and r*2v < 1 for tension.
Therefore. if there is no transverse anisotropy (G, G, = 1), pre-peak strain localization is
excluded under compression because the isotropic line, G,/Gy = 1. meets (31) only at r*/2v —
o for r*/2v > |. Introduction of transverse anisotropy in (1) enhances the possibility of
the shear band mode in the hardening range (£ > 0) under axisymmetric compression. For
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Tension .—*—.-Compression

Fig. 1. Sketch depicts different portions in parameter space (G,/G,. r*/2v) for which shear band

bifurcation occurs at pre-peak (£ > 0) or post-peak (£ < 0) region. The cross-hatched areas are

regions for which strain localization appears preceding the peak applied stress. The plot is based

on cqn (31) which is for K» G, and K » G,. The lines corresponding to normality (r* = 2v) and
isotropy (G, = G;) arc also shown.

example, if r*/2v = 3 [roughly corresponding to u = 0.9 and f# = 0.2 in Rudnicki-Rice
(1975) model]. Fig. | suggests that shear band occurs at £ > 0 for G/G, < 0.1786. Such a
value of G,/G; docs, however, require a strong vertex cffect. Conversely, for tension
(r*/2v < 1) pre-peak strain localization is possible even for G, = G, if r*/2v < 1/4. This
value of r*/2v is possible, since (3) gives, for tension, r* from 0 to 0.44 and 2v from 0.44 to
0.70 for typical values of £ (0.2-0.4) and y (0.4-0.9) suggested by Rudnicki and Rice (1975).
In addition, the occurrence of 4 minimum point at r*/2v = | and G,/G, = 0 (as shown in
Fig. 1) again demonstrates that pre-peak strain localization is not possible for transversely
anisotropic solids satisfying normality.

Similar to the plane strain case (Needleman, 1979; Chau and Rudnicki, 1990), the
ratio tan 0 = ¢,/g., in addition to satisfying (25), must not exceed L/2a and the band must
be vanishingly narrow to meet the traction-free condition on the sides at bifurcation. The
angle 0 at the transition from elliptic to hyperbolic regime satisfies

* 1/4
an 0 — [(l+s)(4E+l8Kr v)] ’ 2

(1=5)(4G, +9K)

where £ can be evaluated by (28) with the < sign replaced by an equal sign. Figure 2 shows
0 versus s(=(0..—06,,)/2G)) for some combinations of material constants (assumed fixed
with 5) given in Table . The parameters r* and v used in Fig. 2 are evaluated assuming
that g and f are positive, as in Rudnicki and Rice’s (1975) model, i.e. (3) is used. A typical
range of u and f suggested by Rudnicki and Rice (1975) is used in Table 1. Equation (3)
gives a discontinuity of both r* and v across s = 0 and, hence, there is also a jump in
bifurcation angle 0.

The predictions of (32) illustrated in Fig. 2 are consistent with experiments for various
rocks. In particular, if s is negligible at localization, @ is found in the ranges 52°-57° for
compression (s < 0) and 19°-36" for tension (s > 0) for the material parameters given in
Table 1. Fracture angles observed experimentally by Brace (1964) and Mogi (1967) for
various rocks (including dolomite, diabase, quartzite, granite and limestone) are in the
ranges 58'~77" for compression and 0°-24" for extension. Therefore, the prediction based
on (32) and (3) underestimates the bifurcation angle for compression but overestimates
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1. 1
-1.0 ~0.5 Q 0.5 1.0
Sz (G- Cer) [2G2
Fig. 2. The bifurcation angle 0, angle between normal to shear band and the axis of symmetry of

the circular cylinder, on the elliptic-hyperbolic (E/H) boundary is shown against (5., —a,,)/2G,. The
parameters for cach curve are given in Table [

Table 1. Various values of p, . G/G,, K/G,, r* and 2v used in plotting Fig. 2 (r* and
2v are evaluated based on eqn (3))

5s<0 s> 0
Curve I B GJ/G, K/G, r* v r* v
l 04 0.2 1.0 100 1.90 1.39 0.44 0.69
2 0.4 0.4 0.75 100 {.90 1.90 0.44 0.44
3 0.6 0.4 0.5 b 259 [.90 0.23 0.44
4 09 0.2 0.5 5 4.25 1.39 -0.03 0.69

them for tension. Note, however, that a stronger non-normality (for example, curve 4 in
Fig. 2) gives better agreement with experiments. To obtain higher values of ¢ for com-
pression requires extreme values of material parameters [see Table 1 of Rudnicki (1977)).

The rough agreement of the prediction of (32) with experiments lends credence to the
interpretation of r* and v based on comparison with Rudnicki and Rice’s (1975) model.
Therefore, this interpretation of r* and v (given by (3)) is used in the rest of this study
except where otherwise stated.

The effects of non-normality and dilatancy on the bifurcation angle can be scen casily
if £and G, are negligible compared with K and s = 0 at the inception of strain localization.
Then, as noted by Rudnicki (1977), eqn (32) can be approximated by tan § = (2r*v)"*.
Therefore, only for incompressible solids satisfying normality, that is, for 2v = r* = |, does
0 = 45", Furthermore, the bifurcation angle 0 increases with non-normality (r*/2v > 1) and
dilatancy in compression; in tension ¢ increases with dilatancy but decreases with non-
normality (r*;2v < 1).

5. DIFFUSE BIFURCATION MODES

Geometric diffuse bifurcation modes, appearing in elliptic, hyperbolic and parabolic
regimes, are considered in this section. Special limits of diffuse modes, such as long wave-
length necking and bulging modes and short wavelength surface rumpling modes, are
emphasized.
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Following Miles and Nuwayhid (1985). the diffuse bifurcation modes are assumed in
the form

x(r.2) = X(r)cos (n=), (33)

where n = kn/L,k = 1,2, ... and, hence, the end boundary condition (14) is satisfied ident-
ically on = = 0 and L. With the eigenmodes (33), the following governing equation of X(r)
is obtained

(ALi—n*BL, +n*C)X(r) =0, (34
where the operator L, has been defined following (18) and 4, B and C have been given in

(22). Furthermore, since the lateral surface r = a of the cylinder sustains no shear traction,
substitution of (17)-(19) and (33) into (15) yields

1 dY dax {
(Y;=Y)-—+Y,—+71°| 'hil = rX(r)dr)—Y.X =0,
r dr dr- re

dx 1
Y, i —-n Ys(;fr)((r) dr) =0, (35)

on r = «. And we have used the following definitions for ¥,,i=1,2,...,6,

Y, =l-r*s,/(2van). Y; = 0,(4G,+9K)/(18Kva,),
Y, = (2G,—0.)(9Kr*v+2E)/(9Kva,), Y4 = —(2G,—6,)/0n. (36)
Yﬁ = U_.;(‘)KI'*V'*'ZE)/(gKVO'm). Y6 =1 —0::/an'

The “follower type™ confining stress (Cheng et al., 1971 ; Vardoulakis, 1983) can be obtained
by simply sctting a,, = 0 in (36).
The general solutions of (34) are of the form

X(r) = A Jo(np:r)+ AxSo(np2r), 37

where J, is the Bessel function of the first kind of order zero. Substitution of (37) into (34)
reveals, as expected, that the p,,, m = 1,2 satisfy (25), the equation for evaluating the
direction of the shear band (g,/g.) ; hence, the regime classification given in Section 4 equally
applies here. Alternatively, (34) can be factored as

(Li+n*piNLy+n°p)X(r) = 0. (38)

Since the evaluation of the eigenvalue equation is similar to that for plane strain (Hill
and Hutchinson, 1975) and to that for axisymmetric deformation (Cheng et al., 1971;
Vardoulakis, 1983 ; Miles and Nuwayhid, 1985), the results arc only summarized briefly in
the following subsections.

5.1. The elliptic regime

As mentioned carlier, the elliptic regime can be subdivided into portions where the
roots are complex (EC) and imaginary (EI). In EC, the roots for (25) are p = p+iq and
its conjugate g = p—iq. The solution form is

X(r) = Re [4Jy(npr)], (39)

where Re[...] denotes the real part of [...]. The quantities p and q are defined as
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p’=q =B, p+q =(CA'". (40)

where 4, B and C are given by (22).
The corresponding eigenvalue equation from (35) is

Im {J, G Y5+ Y ) GoNU Y s+ Y =7l )Y +p YL =0, (41)

where Im [. ..} means the imaginary part of [...] and ; = na (or y = kna’L).
For the EI subregime. the pure imaginary roots of (25) are p, = ip and p, = ig where
p and g are real positive and are related to the material parameters as

PP—q = (B —44Q0)' YA, p +¢ =B A (42)
and again 4, B and C are given by (22). The solution for X (r) becomes
X(r) = Ado(npry+ A1, (ngr). (43)

where [, 1s the modified Bessel function of order zero.
The boundary condition on r = a (35) yiclds the cigenvalue cquation

[Ys = Yep'J1Gp) _ (Y= Vap I Gp) = 3pl Yy = Yop®) Lo Gp) @)
Ys= Yo'l Gy [Yi=Yi@' 1 Gg) =7qlY = Ya@ [l (zq)

for the El subregime.

Both long wavelength limit, 3 — 0, and short wavelength limit, y — o0, of the cigenvalue
equations in EC and EI are considered here. For small values of y, J, can be written in
series representation (Abramowitz and Stegun, 1964) then substituted into (41) to yield the
long wavelength limit for EC:

ElV1+0,[2/9K—r*(1 —v)/L] s
==l ik 70U *2)
The first term on right side is the maximum load point given by (13). Therefore, the long
wavelength necking or bulging modce occurs at the maximum load point independently of
whether the constitutive relation satisfics normality. This observation is consistent with the
result obtained by Miles and Nuwayhid (1985) for long wavelength necking mode under
uniaxial tension. The maximum load point, eqn (45), is sketched as curve A in Figs 8-10.
To consider the long wavelength limit in EI, the series representation of the modified
Bessel function is substituted into (44) to yield (45) again. Therefore, the long wavelength
bifurcation mode (45) continues across the EI/EC boundary.
For the short wavelength limit, v — =, substitution of the asymptotic forms of J, and
I, with large arguments (Abramowitz and Stegun, 1964) leads to the requirement

(Y Yo=Y V) (AC) T+ AY, Y+ Y (CY —BYs) =0, (46)

for the EC subregime. If g, = 0, K — 20 and r* = 2v = [, this short wavelength limit can
be simplified to

C.. .. 2G, -0 |
= _ = (T 47
(E+Gl) l+ (E+G() [2G;+U::] ( )

The eigenvalue equation (47) has been obtained for an incompressible half-space satisfying
normality by Biot (1965) and Bassani ez al. (1980). Hill and Hutchinson (1975) and Young
(1976) also obtained the same bifurcation condition for short wavelength diffuse mode
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under plane strain conditions. Similarly, appropriate specializations of the short wavelength
diffuse mode by Needleman (1979) and Chau and Rudnicki (1990) also lead to (47). The
solution to (46) is shown as curve B in Figs 8-10. Furthermore, the short wavelength limit
never intersects with the E/P boundary because there is no root to (46) on either compressive
or tensile E/P boundaries (s = — 1 and s = 1, respectively).

Substitution of the asymptotic form of the modified Bessel function with large argument
into (44) again leads to (46) for the EI subregime; hence, the short wavelength surface
rumpling modes continue across the EI/EC boundary.

In the plane strain bifurcation analysis, some diffuse bifurcation modes can be excluded
from portions of the elliptic regime (Needleman, 1979 ; Chau and Rudnicki, 1990). However,
due to mathematical complexity. such considerations are not straightforward in the present
axisymmetric case.

5.2. The parabolic regime
In parabolic regime, the roots for (25) are p and ig. The general solutions are in the
form

X(r) = A, Jy(ipr) + A Lo (ngr). (48)
The real constants. p and ¢, are defined as
pi4qi = (B'=44C)"}|Al. p*—q' = —B/A. (49)

Substitution of (48) into (35) leads to the following cigenvalue equation for parabolic
regime

[¥s+ Yor’M Gp) = [¥;+ Y"’:]J,',(Y{') —1polP) Y + Yzf’zl (50)
[Ys= Y@ )iGg) — [Vy=YVag’ 1 (y) —yqloG) Y = Yaq7]

Bifurcation of diffuse modes becomes possible as soon as the parabolic regime is entered.
To sce this, we can first consider the short wavelength limit of (50). This limit requires that
tan (yp) equals a quotient with both the numerator and the denominator being a polynomial
of p and ¢ having coeflicients involving only Y, Y,, Y5 and Y,. This relation is found
similar to that for the parabolic cigenvaluc equation for a rectangular specimen under plane
strain deformations. Consequently, the arguments employed by Hill and Hutchinson (1975)
and by Needleman (1979) for the cigenvalue equation on the tensile elliptic-parabolic
boundary in plane strain case (note yp — oo for fixed value of y in their case) can also be
applied here. Moreover, as already mentioned, we are considering the short wavelength
limit (; = ). Therefore, the saume argument equally applies for the compressive elliptic-
parabolic boundary where p is bounded. More specifically, as s approaches | from above
(or s approaches — | from below), tan (yp) oscilluates between + oo in an infinite sequence
of intervals bounded below by s = | (or bounded above by s = — 1). This implies, as noted
by Hill and Hutchinson (1975). that in any finite interval closed from below by s = 1 (or
from above by s = — 1) there is an infinite sequence of cigenvalues for the short wavelength
limit of (50). In particular, there is an infinite sequence of eigenvalues available in the
vicinitics of both the tensile and compressive E/P boundaries for some sufficiently large &
(note that y = kna/L). Therefore, short wavelength diffuse modes and shear band modes
are always available simultancously once the parabolic regime is entered.

5.3. The hyperbolic regime
In the hyperbolic regime, the solution modes are in the form

X(r) = A\ Jo(npr) + Ay Jo(ngr). (50

The real roots for (25) are p and ¢ and they satisfy
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PG = —BA pigt= (B —440) . (52)
The eigenvalue equation is

(Ys+ Yo' o) [Vt Vap ViGp =oplY + Yop* o)
[Ys+ Yoqg' WiGq)  [Yi+ Y W Gy =54l Y+ Vg W o)

Expanding (53) in ascending powers of 5 gives (43) again. Hence. the long wavelength
necking and bulging modes continue through the elliptic-hyperbolic boundary. The short
wavelength hmit (y — =) of (53) requires that tan{;p) is equal to a quotient with
flp.+tan ) f2(p.¢) as numerator and fr(p.g)+tan G¢) fi(p.g) as denominator. /)
and f, are polynomials of p and ¢ with coefficients involving only ¥, Y.. Y;and I'.. This
relation for the short wavelength limit is again found to be similar to the form of the hyperbolic
eigenvalue equation under plane strain condition (Chau and Rudnicki. 1990 ; Needleman,
1979). Consequently, the same arguments discussed by Needleman (1979) show that bifur-
cation into some sufliciently short wavelength mode is possible as soon as the hyperbolic
regime is entered.

By comparing this scction to Needleman (1979) and Chau and Rudnicki (1990), we
find a close resemblance between ditfuse mode analyses for axisymmetric and plane strain
states. More specifically, although the cigenmodes for plane strain and axisymmetric defor-
mation are different, the results obtained by the diffuse mode analyses share some common
characteristics. In particular, for both cascs the long wavelength limit coincides with the
maximum load point; the surface rumpling modes in the elliptic regime are of the same
form.

Although geometric diffuse modes in both hyperbolic and parabolic regimes are found
to be mathematically admissible, they are of less interest. As soon as the hyperbolic or
parabolic regime is entered, the shear band mode is expected to dominate. However, elliptic
diffuse modes may play a significant role in the development of subsequent localization and
will be investigated numerically next.

6. NUMERICAL RESULTS FOR ELLIPTIC DIFFUSE MODE

In this section, a standard numerical scarch procedure [e.g. Section 9.3 of Press er ol
{(1989)) was used to evaluate the bifurcation stresses to six significant digits at various values
of ¥y (=kna/L) in the EC subregime. First, the EC subregime was identified using (26).
Then, (41) 1s used to scarch for the root of (6..—a,,).2G, at cach fixed 7. It no cigen-
vilue was found within the EC subregime, the scarch is discontinued.

The material parameters in (1), in general, change in a possibly complex way with
stress. However, in order to gain insight into their effect on the occurrence of diftuse
bifurcations, solutions to (41) in Fig. 3 arc given by holding all parameters, except one,
constant. :

6.1. Diffuse mode with finite y

In Fig. 3(a), typical cigenvalue surfaces for a solid not satisfying normality (p # fi) at
various values of £/G, are obtained for both tension and compression. The long wavelength
limit (7 = 0). cqn (45) (corresponding to curve A in Fig. 8), coincides with the y-axis in
Fig. 3(a). Under compression, for increasing |0../2G)|. the first cigenvalue surface we
intersect is the one for £/G, = 0. Morce specilically, the lowest possible bifurcation stress is
always at peak (£/G, = 0). However, the actual value of £y may not be zero when |a../2G]
intersects the cigensurface of E/G) = 0: henee (41) may not be satistied at that point. In
particular, the actual bifurcation may occur pre-peak (£ > 0) if {6../2G,| increases more
rapidly than the drop of E/G, such that {41) is satisfied for some positive £/G,. Note that
the eigenvalue surfaces in compression (a../2G, < 0) always have a maximum point (or
smallest compressive stress level), which occurs at 3 somewhere between two and three. for
a fixed E/G, as shown in Fig. 3(a).
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Similar eigenvalue surfaces are plotted in (0../2G,. y)-space in Fig. 3(b) for a solid
satisfving normality (u = ). To satisfy the eigenvalue equation a higher stress level
(10..] 2G)). in both tension and compression, is required for the same £ G, compared with
Fig. 3{a). Thus, deviations from normality promote diffuse bifurcations in EC.

The effect of transverse anisotropy on EC diffuse modes occurring at peak (E.G, = 0)
1s Hlustrated in Fig. 3(c) by plotting the eigenvalue surfaces for various values of G- G,. The
drop of G, G, from unity reduces the eigenstress significantly at peak (E°G, = 0). That is.
the introduction of transverse anisotropy promotes diffuse modes in both tension and
compression. Again, the maximum eigenstress in compression occurs at 7 between two and
three.

Since the most common testing configuration for geological materials involves a con-
stant confining stress. the effects of lateral stress are examined in Fig. 3(d). As the com-
pressive confining stress increases, the eigenstress ({o..—0,.]/2G)) increases in tension but
decreases in compression. More specifically, compressive confining stress promotes diffuse
bifurcation modes in compression but retards them in tension.

Numerical calculations reveal that the effects on the eigenstress of decreasing G,/K
betow 1/5 are mnsignificant for finite 7 (< 10). Furthermore. the eigenvalue surface is
suppressed by G,/K greater than one.

As shown in Fig. 3(a-d), the smallest cigenstress level always appears at y between two
and three under compression. Typical radius to length ratios (¢/L) of rock specimens used
in experiments are between 1/4 [e.g. Wawerstk and Fairhurst (1970) and Hadley (1975)]
and 1/6 [e.g. Mogi (1967) and Scholz (1968)]. The cigenmodes, which give v (=Ana/L)
between two and three, are those with wave number A =3 and A =4 or Sfora'l = 1/4
and a/l, = 1/6, respectively, Combining the definition of ¢, in terms of z(r.z) and the
cigenmode (33) reveals that ¢, is proportional to cos(knz/1). Such cigenmodes appear to
be the carliest diffuse modes available under compression and are sketched in Fig. 4(a) for
£ =3and 'L = /4 and in Fig. 4(b) for k = 4 and /L = 1/6. Note that the bulging mode
(k = 1} is not possible for these specimen sizes according to Fig. 3{a -d). Furtherimplications
ol these diffuse modes in compression on strain localizations are discussed in Section 7.

Under tension, as shown in Fig, 3, the minimum cigenstress ts always at ¢ = 0, Le. the
maximum load point, for any fixed value of E/G,. These numerical results suggest that,
similar to the plane strain case (Chau and Rudnicki, 1990), the long wavelength diffuse
mode is always the first bilurcation encountered in the EC subregime under tension. As
shown in Fig. 3, the eigenstress for diffuse modes appearing at peak (£ = 0) increases slowly
for ¥ less thun about three under tension. Then, for solids satisfying normality, as shown
in Fig. 3(b d), the cigenstress rises more rapidly for y between three and four before forming

Go

(@) L k=3 by G/L:Y% k:z4

Fig. 4. Sketches iltustrate the carliest possible pre-peak diffuse mode under compression. Possible
shear band localization triggered by diffuse mode is also shown. The sketches are for: (wya L = 1 4
and k& = 3:;and (b) o/L = /6 and k = 4.
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a hump-shaped curve ; for solids that do not obey normality, as shown in Fig. 3(a), diffuse
modes with y greater than 3.5 are not possible at peak applied stress (E = 0). Since ¢, is
proportional to cos (knz/L), for a specimen of finite size (non-zero a/L), k = 2 corresponds
to the necking mode. For the material parameters used in Fig. 3, it can be shown that, as
longas a/L < 7/4r, necking is possible at peak applied stress (E = 0) under tension. Necking
may actually appear pre-peak (see, for example, (45) or curve A in Figs 8-10) depending
on the evolution of material parameters under loadings.

6.2. The short wavelength diffuse mode (y — )

Eigenvalue surfaces given in Fig. 3(a—d) are restricted to the finite wave number &
(y < 10). For large 7, or the short wavelength limit, (46) is solved numerically for various
values of compressive confining stress and plotted in Fig. 5. The cross-hatched regime
corresponds to the portion in the parameter space where the surface rumpling mode is
possible preceding the peak applied stress (£ = 0). The short wavelength limit of the diffuse
mode may appear pre-peak if |o..— 0,,//2G, increases more rapidly than the drop of E/G,.
As depicted in Fig. 5(a, b), there are two separate cross-hatched regions, one on the
compressive side and one on the tensile side, in the parameter space. However, as shown
in Fig. 5(c. d). as the compressive confining stress level increases the two separate regions
connect. Consequently, surface undulation becomes possible even under hydrostatic stress,
i.e. 0.. = 0,,. Therefore, compressive confining stress is conducive to the appearance of
short wavelength diffuse mode. Note that, in Fig. 5, we have assumed that 7* and v are
independent of the sign of s, that is, the interpretation of Fig. § is not restricted to the
Rudnicki-Rice (1975) model. Such interpretations of r* and v apply also to Figs 6 and 7.

For uniaxial tension and compression (a,, = 0), the condition for short wavclength
modc at peak applied stress (£ = 0) can be obtained from (46) as

o.. L+ a. r* (4(]l | 2G,—-o.. |]'? 54
G, G, [\ 2y ok T 2G,+0.. || - (4)

The effect of transverse anisotropy on the short wavelength diffuse mode is investigated by
plotting r*/2v against ¢../2G, in Fig. 6 for zcro G,/K. Again, the cross-hatched regions

i [Ge2-03 Cr /GL=-0.5 ) pa/2y
\ AN
FNU N\ \ {20
\ \,
E>0 \E>O E<O
L \ L L1.0
N\
-1.0 -1.0 0 1.0
(@) (Typ-Cer)/2Gy (b) (Te-Trr) /2Gy
Cer/G1=-06 | posay, Cer Ge2-0.7 § sy,
\ 20 3 k—\\ \\-2.0
E>0Q <o/ E>0
N AN
b 1.0 \-{
SIS |
-1.0 [s) 1.0 -1.0 0 1.0
(€) (T3 -e) /262 (d) (G2e~Trr) [2Gs

Fig. 5. Skctches depict different portions in (r*/2v, 0../2G,)-space for which short wavelength diffuse

modes may occur at pre-peak (£ > 0). The cross-hatched arcas are regions for wheih surface

rumpling may appear preceding the peak applicd stress. Material parameters used are v = I,

G/G, = 1/4, G/K = 1/4, and with (a) 6,,/G, = ~0.3: (b} 0,./G, = —~0.5: (¢) 4,,/G, = —0.6; and (d)
¢,,/Gy = —0.7,
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correspond to the parameter space where surface rumpling mode can appear pre-peak
(£ > 0). As vG /G, decreases both compressive and tensile cross-hatched regions expand
correspondingly. That is, a stronger transverse anisotropy. corresponding to a smaller
vG /G, reduces the cigenstress level (Jo..1/2G)) required for pre-peak surface wrinkle mode.
The two separate cross-hatched regions finally mect at r*/2v = | as vG,/G, approaches zero.
Thus, the surface rumpling mode becomes possible at peak even for small ¢../2G, if vG /G,
is negligible. Again, surface modes may appear at some positive £/G, if |o..|/2G, increases
faster than the drop of E/G,. More specifically, the introduction of transverse anisotropy
enhances the appearance of the short wavelength diffuse mode. This conclusion is the same
as those for diffuse modes with finite y (see Fig. 3(c)).
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Alternatively. (54) can be plotted for varying G,/K but fixed vG /G, as shown in Fig. 7.
As shown in Fig. 7(a~d), when the in-plane bulk modulus K decreases the cross-hatched
portions expand in the compressive regime but shrink in the tensile one. In short. in-plane
compressibility promotes the appearance of pre-peak surface undulation under compression
but retards them under tension.

As mentioned previously. the values of r* and v used for Figs 5-7 are independent of
Rudnicki-Rice (1975) model : that is. (3) is not used. However, as mentioned in Section 2.
the Rudnicki-Rice (1975) model suggests that r*/2v > | for compression. As shown in Figs
5-7. (54) changes slowly with the increase of r*/2v for r*/2v > I. That is. the short wave-
length diffuse mode is relatively less sensitive to non-normality compared with the diffuse
mode for finite 7.

7. DISCUSSION

The incremental constitutive parameters in (1) are, in general, functions of deformation
and stress state. For example, for brittle rocks, v increases rapidly with deformation after
the onset of dilatancy but decreases with confining pressure [e.g. Brace et al. (1966)]. Thus,
the interpretations of the present analysis can be extremely complicated and difficult.
However, if r*, v, G|, G, and K vary much more slowly with dcformation than the tangent
modulus £, the situation is simplified considerably. And we further assume that the confining
stress is constant during the whole course of deformation.

With the above simplifications, Fig. 8 shows a typical case of the response regimes
when a,, = 0. Since both r* and v, according to (3). change values across a.. = 0, the
responsce regimes are not symmetric with respect to o, = 0, and henee, differ from the plane
strain analysis (sce Figs 3-5 of Chau and Rudnicki, 1990).

In general, the maximum load point (13) and the clliptic -hyperbolic (E/H) boundary
do not intersect s = | at the same point. For example, if

E@G +9K) > 9Kv(2 = r*G /G) (o ~a,,), (35)

the maximum load point cuts s = | on the EI/P boundary or otherwise the maximum load
point meets s = | on the H/P boundary.

~
H

-1.0 -0.5 o} Q.5 1.0
=, /2Gy

Fig. 8. Sketch shows different regimes of bifurcation, including hyperbolic (H). elliptic complex
(EC). elliptic imaginary (EI) and parabolic (P), in the parameter space (£/G,. (7., —a,,):2G,) for
0., = 0. The material parameters r* and v are evaluated using eqn (3) and assuming g and f§ are
positive in Rudnicki and Rice's (1975) model. Long wavelength limit (curve A) and short wavelength
limit (curve B) are also shown. Sketch is for G, = 0.75G,, K = 5G,, pu=06and =02
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According to Fig. 8, for tension (o.. > 0), strain localization seems always possible in
the hardening range (£ > 0) for the constitutive parameters considered (G, = 0.75G,,
K=5G, u=0.6 and f=0.2). If E/G, drops rapidly and the loss of ellipticity occurs
between ¢.. = 0 and r,. the long wavelength necking mode (surve A) may precede the shear
band mode depending on the actual slenderness ratio of the specimen. However, the
numerical solution of (41) (see Fig. 3) suggests that a necking mode, but not necessarily
the long wavelength mode, is always possible in the EC subregime even for finite specimen
size (a/L s 0 but less than 7/4r). For slowly decreasing E/G,. if a sufficiently large value of
g../2G, can be sustained, the short wavelength surface rumpling (curve B) precedes loss of
ellipticity but occurs after the maximum load (curve A). If G, is interpreted as a vertex
reduced shear modulus such that loss of ellipticity occurs on the EI P boundary between

18Kv(2—r*G,/G))
dv > Ef
\>E/G|> 4G(+9A’ N (56)

then the necking mode always precedes the shear band mode available on the E/P boundary
(note that (55) is satisfied for the constitutive parameters used in Fig. 8). However, if the
parabolic regime is entered at E/G, > 4v, no necking mode precedes the initiation of the
shear band. In compression (o, < 0), pre-peak shear band, or strain localization, is possible
only if loss of ellipticity occurs at sulliciently large values of a../2G,. i.c. yicld surface vertex
effect dominates in the interpretation of G. In such circumstances, surface rumpling always
precedes the localization. If G is essentially the elastic modulus during the whole defor-
mation path, localization occurs relatively late in the post-peak applicd stress regime (£ < 0)
ncar s = 0. This is consistent with the conclusions by Rudnicki and Rice (1975) and by
Rudnicki (1977). In such situations, both long wavelength bulging and short wavelength
surface bifurcations may precede shear band bifurcation. In particular, if the exit to hyper-
bolic regime occurs between a.. = 0 and r,, bulging mode is always possible before the
onsct of localization depending on the actual specimen dimensions. If foss of ellipticity
happens between ry and ry, short wavelength surface mode precedes shear band mode but
occurs after the long wavelength bulging mode. Further, the short wavelength diffuse mode
is always available prior to the entry to the hyperbolic regime between ry and E/G, = 0.

However, as shown in Fig. 3, some intermediate diffuse modes, between long and short
wavelength limits, with finite wave number are actually possible preceding or at peak applicd
stress. That is, the pre-peak diffuse bifurcation mode, as depicted in Fig. 4, is always possible
before the transition from the EC subregime to the hyperbolic regime. Then, once (41) is
satisfied for some positive £/G, during the evolution of deformation, diffuse modes such as
those shown in Fig. 4 occur preceding peak applied stress. Because these diffuse modes
appear in the elliptic regime before localization, they may affect the subsequent development
of localization. Roughly speaking, these deformed states may be viewed as initial geometric
imperfection of the specimen. By using finite element method, Tvergaard et al. (1981) found
that geometric imperfection plays an important role in governing the subsequent shear
band pattern of a rectangular specimen under plane strain tension. However, a similar
numerical simulation is not available for cylindrical specimens under compression. Never-
theless, such pre-peak or at peak diffuse bifurcation modes may precipitate localization of
deformations. In particular, as shown in Fig. 4, the angle between the z-axis and the normal
of the line joining two opposite adjacent troughs are 53.13” and 56.31" (by assuming a small
amplitude of diffuse modes) for a/L = 1/4 and a/L = 1/6 respectively. These angles are just
about the angle of faulting predicted by (32) for small (a..—a,,);2G, under compression
(e.g. see Fig. 2). This coincidence lcads naturally to the suspicion that such diffuse modes
trigger the pre-peak localization of deformation observed for rocks. Of course. the geometric
modes depicted in Fig. 4 may not appear at all depending on the evolution of material
parameters with deformation and whether the eigenvalue cquation (41) is satisfied.
Although the hypothesis seems plausible, numerical calculations, similar to those of Tver-
gaard et al. (1981), are required to further investigate and clarify such a possibility.
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E/Gs

-1.0 -Q.5 0 0.5 10
52 (03~ 03, ) /26y

Fig. 9. Same as Fig. 8 for tensile lateral stress of g,, = 0.2 G,.

Consequently. a localized shear band may appear much earlier than the theoretical
prediction, which is based on the loss of ellipticity, given in Section 4. Therefore, the
hypothesis that a pre-peak diffuse mode triggers localization of deformation provides a
possible explanation for those experimental observations summarized by Santarelli and
Brown (1989).

For tensile lateral stress (a,, = 0.2G)), as shown in Fig. 9, the long wavelength limit
(curve A) shifts upward and cuts s = 0 at

E _a,[r*(1 =v)+2v(1 +20,/9KV)]
G~ G(l+20,90

(57)

and the short wavelength limit (curve B) pierces the EC/EI boundary to continue in EI
subregime. That is, tensile lateral stress favors the appearance of both short wavelength
surface mode and long wavelength necking mode for s > 0. Furthermore, the compressive
E/H boundary between r, and ry shrinks considerably as curve B moves upwards faster
than curve A. However, the overall response is similar to that described for Fig. 8.

Figure 10 shows a situation for compressive lateral stress of g,, = —0.2G,. In this case,
both curves A and B move towards the E/H boundary. More specifically, the shear band

E/G,
6.0

El

L
-1.0 -0.5 0] 05 1.0
52 (Tz~Tre) /26y
Fig. 10. Same as Fig. 8 for compressive lateral stress of 6, = —0.2G,.
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mode, appearing in the hardening regime. precedes the long wavelength necking mode when
the exit to the hyperbolic regime occurs near s = 0. The short wavelength mode {(curve B)
is eliminated in nearly the entire tensile elliptic regime except on the E H boundary between
r. and ry. Thus, compressive lateral stress delays the appearance of both long and short
wavelength limits of diffuse mode in the tensile regime (5 > 0). And further increase in
compressive lateral stress may suppress all short wavelength diffuse modes in the tensile
elliptic regime. On the compressive side (s < 0), the E H boundary (in the softening range)
between r, and r; expands as curve B moves downwards faster than curve A. However, the
response diagram is quite similar to that of Fig. 8. Again. according to Fig. 3(d), compressive
lateral stress enhances pre-peak diffuse mode with finite wave number. Hence, according
to our hypothesis. the inception of shear band localization is more likely to occur preceding
peak applied stress under compressive lateral stress.

As mentioned in Section 3.1, due to the mathematical complexity involved. the
exclusion of bifurcations in the elliptic regime is not obvious compared with the plane straun
analysis given by Needleman (1979) and by Chau and Rudnicki (1990). However, the
numerical results obtained in Section 6 for diffuse modes suggest that bifurcition is excluded
for the portion of tensile EC subregime which is above curve A, the maximum load point,

The discusston for the response regime given in this section is based on the assumption
that other material parameters vary slowly with deformation comparing to the tastan-
tancous tangent modulus £, A more realistic and complete picture of the possible bitur-
cations requires a good knowledge of the evolution of all constitutive parameters with
deformation and stress states.

% CONCLUSION

We have extended the previous bifurcation analyses of axisymmetric cylinders by
Hutchinson and Miles (1974), and by Miles und Nuwayhid (1985) to include trans-
verse antsotropy and non-normality by employing Rudnicki’s (1977) modcl. The bifurcation
analysis considers both diffuse geometric and tocalized shear band modes. The effects of
the introduction of non-normality and transverse anisotropy on diffuse modes are examined
in detail. Emphasis is given to study the relationship between diffuse modes and shear band
modcs.

Although the significance of both transverse anisotropy and non-normality on the
shear band mode has been considered by Rudnicki (1977), for the sake of completeness,
we have re-examined them in more detail in Scetion 4. In particular, as concluded by
Rudnicki (1977}, both transverse anisotropy and non-normality enhance the possibilitics
of pre-peak localization under axisymmetric compression but extreme values for material
parameters have to be used.

More importantly, the effect of constitutive parameters on EC diffuse modes is studied
numerically in Section 6. In general, the introduction of both transverse anisotropy and
non-normality lowers the eigenstress for diffuse modes in both tension and compression.
Furthermore, compressive confining stress is found to decrease the cigenstress fevels at
bifurcation in compression but increase them in tension. That is, compressive confining
stress enhances diffuse modes in compression but retards them in tension. For short
wavelength surface undulation, both transverse anisotropy and compressive confining stress
reduce the cigenstress required for pre-peak bifurcations. However, the in-plane com-
pressibility promotes the occurrence of pre-peak surface rumpling modes under compression
but retards them under tension.

In addition. the long wavelength mode is always the first available bifurcation under
tension. Even for finite specimen size (a/L # 0), necking seems to be the carliest possible
kind of bifurcation under tension. In compression, for typical cylindrical geometry of /L
ranging from 1/4 to 1/6, the most likely bifurcation modes arc those with wave number,
k = 3 or 4 instead of bulging mode {k = 1). The angle of shear band promoted by these
diffuse modes coincides with the theoretical prediction by Section 4, This obscrvation leads
to the hypothesis that pre-peak strain localization observed in experiments is triggered by
the EC diffuse modes.
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Guided by plane strain analysis (Hill and Hutchinson, 1975 ; Needleman, 1979 ; Chau
and Rudnicki. 1990) and by axisymmetric analysis (Rudnicki, 1977 ; Miles and Nuwayhid.
1985) we have extended the bifurcation analysis for compressible circular cylinders to
include non-normality and transverse anisotropy. However, the possible link between
diffuse and localized modes. suggested in Section 7, requires further study.
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